H.R.F.I -'Basic Research Project

''GEONE''  Advanced geostatistical modelling for natural resources evaluation

The project's primary objective is to disseminate information regarding the modeling of natural resources data by exploring modern covariance functions applications employing Euclidean and non-Euclidean spaces.

Technical University of Crete - Environmental Mining and Sustainable Development Research Unit

Contact Details                                                                                             

School of Mineral Resources Engineering

Technical University of Crete

Assistant Professor: Emmanouil Varouchakis

Tel: 00302821037642

Email: evarouchakis@tuc.gr

www.envi-stat.tuc.gr/en/home


News

8/1/2024 Welcome to GEONE Website

11/1/2024 Kick Off Meeting of GEONE Research Program

Project Objectives

  • Gaussian anamorphosis of asymmetrically distributed natural resources data

  • Investigation of Euclidean and non-Euclidean distance metrics

  • Investigation of Kernels application for modelling natural resources data spatial dependence

  • Exploration of novel covariance functions

  • Investigation of modelling uni-multi-variate natural resources data

  • Case study applications

 

Work Packages

  • WP1 Title: Project Management
  • WP2 Title: Exploration of covariance functions using Euclidean and non-Euclidean distance metrics.
  • WP3 Title: Development of gaussian anamorphosis models for data sets that exhibit non-Gaussian distributions
  • WP4 Title: Natural resources modeling applications
  • WP5 Title: Dissemination and Communication Management

Related Research

  • Pavlides, A., Varouchakis, E.A., Hristopulos, D.T., 2023. Geostatistical analysis of groundwater levels in a mining area with three active mines. Hydrogeol. J. 31(6), 1425-1441. DOI:10.1007/s10040-023-02676-9
  • Varouchakis, E.A., Guardiola-Albert, C., Karatzas, G.P., 2022. Spatiotemporal Geostatistical Analysis of Groundwater Level in Aquifer Systems of Complex Hydrogeology. Water Resour. Res. 58(3), e2021WR029988. DOI:https://doi.org/10.1029/2021WR029988
  • Varouchakis, E.A., 2021. Gaussian Transformation Methods for Spatial Data. Geosciences 11(5), 196.
  • Varouchakis, E.A., Hristopulos, D.T., 2019. Comparison of spatiotemporal variogram functions based on a sparse dataset of groundwater level variations. Spatial Statistics 34, 100245. DOI:https://doi.org/10.1016/j.spasta.2017.07.003
  • Varouchakis, E.A., Hristopulos, D.T., 2013. Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables. Adv. Water Resour. 52(2013), 34-49.
  • Varouchakis, E.A., Hristopulos, D.T., Karatzas, G.P., 2012. Improving kriging of groundwater level data using nonlinear normalizing transformations-a field application. Hydrolog. Sci. J. 57(7), 1404-1419.

Team Members

Technical University of Crete

Assistant Professor Emmanouil Varouchakis, PhD

Dr. Andreas Pavlidis, Mineral Resources Engineer, Postdoc Researcher, Geostatistics

Maria Koltsidopoulou, Electrical and Electronic Engineer, PhD candidate

 

Nazarbayev University

Nasser Madani, PhD

Associate Professor, School of Mining & Geosciences

 

CERENA/DER, Pavilhão deMinas, Instituto Superior Técnico

Leonardo Azevedo, PhD

Associate Professor, Universidade deLisboa


Funding and Collaborating Institutions

The research project is implemented in the framework of H.F.R.I call “Basic research Financing (Horizontal support of all Sciences)” under the National Recovery and Resilience Plan “Greece 2.0” funded by the European Union – NextGenerationEU (H.F.R.I. Project Number: 16537).